माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?

  • [JEE MAIN 2023]
  • A

    $1261$

  • B

    $1262$

  • C

    $1263$

  • D

    $1260$

Similar Questions

$a_{n}=(n-1)(2-n)(3+n)$ द्वारा परिभाषित अनुक्रम का $20$ वाँ पद क्या हैं ?

यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा

माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|

  • [IIT 2018]

दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।

यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब