3 and 4 .Determinants and Matrices
hard

$\theta \in(0, \pi)$ के मानों की संख्या, जिसके लिये रेखीय समीकरण निकाय $x+3 y+7 z=0$, $-x +4 y +7 z =0$, $(\sin 3 \theta) x +(\cos 2 \theta) y +2 z =0$ के अनिरर्थक हल हो, होगी

A

$3$

B

$2$

C

$4$

D

$1$

(JEE MAIN-2019)

Solution

$\left| {\begin{array}{*{20}{c}}
{\sin 3\theta }&{ – 1}&1\\
{\cos 2\theta }&4&3\\
2&7&7
\end{array}} \right| = 0$

$7\sin 3\theta  + 14\cos 2\theta  – 14 = 0$

$\sin 3\theta  + 2\cos 2\theta  – 2 = 0,\sin \theta  = \frac{1}{2}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.