$31$ वस्तुओं, जिनमें $10$ समरूप (identical) हैं तथा $21$ भिन्न हैं, में से $10$ वस्तुओं के चुने जाने के तरीकों की संख्या है
$2^{20}$
$2^{20}+1$
$2^{21}$
$2^{20}-1$
$2 \le r \le n$ केलिए,$\left({\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
एक महिला अपने $6$ अतिथियों को रात्रिभोज पर आमंत्रित करती है, वह $10$ मित्रों में से उन अतिथियों को कुल कितने प्रकार से आमंत्रित कर सकती है, जबकि कोई दो मित्र एक साथ रात्रिभोज में न आयें
किसी समूह में $4$ लड़कियाँ और $7$ लड़के हैं। इनमें से $5$ सदस्यों की एक टीम का चयन कितने प्रकार से किया जा सकता है, यदि टीम में एक भी लड़की नहीं है ?
कम से कम एक लड़का तथा एक लड़की है ?
$8$ व्यक्तियों के सम्मेलन में, यदि प्रत्येक व्यक्ति एक दूसरे से एक ही बार हाथ मिलाता है तब हस्त मिलनों की कुल संख्या होगी
$10$ व्यक्ति, जिनमें $A, B$ तथा $C$ सम्मिलित हैं, एक कार्यक्रम में भाषण देने वाले हैं। यदि $A, B$ के पूर्व भाषण देना चाहे तथा $B,C$ के पूर्व भाषण देना चाहे तब कुल कितने प्रकार से यह कार्यक्रम हो सकेगा