राष्ट्रीय प्रयोगशाला में स्थित एक मानक घड़ी से तुलना करके दो घड़ियों की जाँच की जा रही है। मानक घडी जब दोपहर के $12:00:00$ का समय दर्शाती है, तो इन दो घड़यों के पाठ्यांक इस प्रकार हैं

  घड़ी $1$ घड़ी $2$
सोमवार $12:00:05$ $10:15:06$
मंगलवार $12:01:15$ $10:14:59$
बुधवार $11:59:08$ $10:15:18$
बृहस्पतीवार $12:01:50$ $10:15:07$
शुक्रवार $11:59:15$ $10:14:53$
शनिवार $12:01:30$  $10:15:24$
रविवार $12:01:19$ $10:15:11$

यदि आप कोई ऐसा प्रयोग कर रहे हों जिसके लिए आपको परिशुद्ध समय अंतराल मापन की आवश्यकता है, तो इनमें से आप किस घडी को वरीयता देंगे? क्यों ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The range of variation over the seven days of observations is $162 \;s$ for clock $1$ , and $31 \,s$ for clock $2 .$ The average reading of clock $1$ is much closer to the standard time than the average reading of clock $2 .$ The important point is that a clock's zero error is not as significant for precision work as its vartation, because a zero-error can always be easily corrected. Hence clock $2$ is to be preferred to clock $1$

Similar Questions

सरल लोलक का दोलन काल $T = 2\pi \sqrt {\frac{l}{g}} $ से दिया जाता है, जहाँ l लगभग $100 \,cm$ है तथा न्यूनतम $1 \,mm$ तक शुद्धता से मापा जाता है। दोलन काल $(T)$ लगभग $2$ सैकण्ड है। यदि $100$ दोलनों के समय को उस घड़ी से मापा जाए जिसका अल्पतमांक $0.1$ सैकण्ड है, तो $g$ में प्रतिशत त्रुटि  ......... $\%$ होगी

एक भौतिक राशि $X = {M^a}{L^b}{T^c}$ द्वारा प्रदर्शित है तथा $M,L$ एवं $T$  के मापन में प्रतिशत त्रुटि क्रमश: $\alpha ,\beta $ व $\gamma $ हे तो X में अधिकतम प्रतिशत त्रुटि होगी

$(0.4 \pm 0.01) \mathrm{g}$ द्रव्यमान के एक बेलनाकार तार की लम्बाई $(8 \pm 0.04) \mathrm{cm}$ एवं त्रिज्या $(6 \pm 0.03) \mathrm{mm}$ है। इसके घनत्व में अधिकतम त्रुटि $........\%$ होगी:

  • [JEE MAIN 2023]

एक सरल लोलक का आवर्तकाल $T =2 \pi \sqrt{\frac{\ell}{ g }}$ से दिया गया है। लोलक की लम्बाई को $10 \,cm , 1\, mm$ यथार्थता के साथ मापा गया है। लोलक के $200$ दोलनों का समय $1 \,s$ विभेदन वाली घड़ी से $100 \,s$ मापा गया है। ' $g$ ' के मान को इस सरल लोलक द्वारा यथार्थता के साथ मापने पर प्रतिशत त्रुटि ' $x$ ' है। ' $x$ ' का मान निकटतम पूर्णांक में होगा। ($\%$ में)

  • [JEE MAIN 2021]

एक बेलन की लम्बाई $0.1 \,cm$ अल्पतमांक की मीटर छड़ से मापी जाती है। इसका व्यास $0.01\, cm $ अल्पतमांक के वर्नियर कैलीपर्स से मापा जाता है। यदि बेलन की लम्बाई $5.0 \,cm$ तथा त्रिज्या $2.0 \,cm$ हो तो इसके आयतन की गणना में प्रतिशत त्रुटि ......... $\%$ होगी