વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.

  • A

    $\frac{\pi }{4}$

  • B

    $\frac{\pi }{2}$

  • C

    $\pi$

  • D

    $2\pi$

Similar Questions

વિધેય $f$ એ ગણ $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ થી ગણ $B=\left\{n^{2}: n \in N\right\}$ કે જેથી દરેક $x \in A$ માટે $f(x) \leq(x-3)^{2}+1$ તેવા વિધેય $f$ ની સંખ્યા મેળવો.

  • [JEE MAIN 2022]

વિધેય $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ ને વ્યાખ્યાયિત થવા માટે $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ માંથી મહતમ અંતરાલ મેળવો.

  • [AIEEE 2007]

ધારોકે $[t]$ એ $t$ અથવા તેનાથી નાનો મહ્તમ પૂર્ણાંક છે. ધારોકે $A$ એ $2310$ ના બધા અવિભાજ્ય અવયવોનો ગણ છે અને $f: A \rightarrow \mathbb{Z}$ એ વિધેય $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$ છે. $A$ થી $f$ નાં વિસ્તાર પરના એક-એક વિધેયોની સંખ્યા ............ છે.

  • [JEE MAIN 2024]

જો દરેક $x \in R$ માટે વિધેય $f:R \to R$ અને $g:R \to R$ એ $f(x) = \;|x|$ અને $g(x) = \;|x|$ આપેલ છે , તો $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

 $log\,log\,log\,  ....(x)$  નો પ્રદેશગણ મેળવો.

   $ \leftarrow \,n\,\,times\, \to $