- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y-$अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।
Option A
Option B
Option C
Option D
Solution
since the centre is at $(0,\,0)$ and the major axis is on the $y-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ……….. $(1)$
Where, a is the semi-major axis The ellipse passes through points $(3,\,2)$ and $(1,\,6) .$ Hence,
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$ ……….. $(2)$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$ ……….. $(3)$
On solving equations $(2)$ and $(3),$ we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$
Standard 11
Mathematics