$\lambda$ का धनात्मक मान, जिसके लिये व्यंजक $x ^{2}\left(\sqrt{ x }+\frac{\lambda}{ x ^{2}}\right)^{10}$ में $x ^{2}$ का गुणांक $720$ है, होगा
$4$
$2\sqrt 2 $
$\sqrt 5 $
$3$
$(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
यदि ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ के विस्तार में $x $ का गुणांक $270$ हो, तो $k =$
${(1 + \alpha x)^4}$ व ${(1 - \alpha x)^6}$ के प्रसार में मध्य पद के गुणांक समान होंगे यदि $\alpha $ का मान है
यदि $\left(\mathrm{x}^{\frac{2}{3}}+\frac{\alpha}{\mathrm{x}^3}\right)^{22}$ के प्रसार में $\mathrm{x}$ से स्वतंत्र पद 7315 है, तो $|\alpha|$ बराबर है______________.
${\left( {x - \frac{1}{x}} \right)^7}$ के विस्तार में ${x^3}$ का गुणांक है