रेखीय सरल आवर्त गति कर रहे किसी कण का स्थितिज ऊर्जा फलन $V(x)=k x^{2} / 2$ है, जहां $k$ दोलक का बल नियतांक है । $k=0.5$ $N m ^{-1}$ के लिए $V(x)$ व $x$ के मध्य ग्राफ चित्र में दिखाया गया है। यह दिखाइए कि इस विभव के अंतर्गत गतिमान कुल $1 \,J$ ऊर्जा वाले कण को अवश्य ही 'वापिस आना' चाहिए जब यह $x=\pm 2 m$ पर पहुंचता है।
Total energy of the particle, $E=1 J$
Force constant, $k=0.5 N m ^{-1}$
Kinetic energy of the particle, $K =\frac{1}{2} m v^{2}$
According to the conservation law:
$E=V+K$
$1=\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2}$
At the moment of 'turn back', velocity (and hence $K$ ) becomes zero. $\therefore 1=\frac{1}{2} k x^{2}$
$\frac{1}{2} \times 0.5 x^{2}=1$
$x^{2}=4$
$x=\pm 2$
Hence, the particle turns back when it reaches $x=\pm 2 m$
दो समान द्रव्यमान की चमकीली गेंदें समान वेग से परस्पर लम्बवत् दिशा में गति कर रही है तथा टकराने के पश्चात् एक दूसरे से चिपक जाती है। यदि गेंदों का प्रारम्भिक वेग $45\sqrt 2 \,m{s^{ - 1}}$ हो, तो संयुक्त गेंद का वेग .................. $\mathrm{m} / \mathrm{s}^{-1}$ होगा
एक $3m$ किलोग्राम द्रव्यमान का बम, विस्फोटित होकर $m$ किलोग्राम तथा $2m$ किलोग्राम के दो टुकड़ो में विभाजित हो जाता है। यदि $m$ किग्रा वाले टुकडे का वेग $16$ मी/सैकण्ड है, तो विस्फोट में मुक्त कुल गतिज ऊर्जा ............... $\mathrm{mJ}$ है
दो कणों के द्रव्यमान क्रमश: $m_1$ तथा $m_2$ हैं। इनके प्रारम्भिक वेग क्रमश: $u_1$ तथा $u_2$ हैं। टक्कर के पश्चात् एक कण $\epsilon$ ऊर्जा अवशोषित कर उच्चतर स्तर तक उत्तेजित हो जाता है। यदि कणों के अन्तिम वेग क्रमशः $v_1$ तथा $v_2$ हो, तो
$125000$ पाउण्ड के एक स्थिर टैंक से $ 25$ पाउण्ड द्रव्यमान का एक छोटा गोला (Shell) $1000$ फीट/सैकण्ड के वेग से दागा जाता है। टैंक निम्न वेग से .............. $\mathrm{ft/sec}$ पीछे हटेगा
चित्र में दिखाए गये घर्षणरहित पथ $AOC$ पर $1 \,kg$ द्रव्यमान का एक कण बिन्दु $A$ (ऊँचाई $2$ मीटर) से विरामावस्था से शुरू होकर नीचे की ओर फिसलता है। बिन्दु $C$ पर पहुँचने के बाद यह पर प्रक्षेप्य (projectile) की तरह हवा में चलते रहता है। जब यह अपने उच्चतम बिन्दु $P$ (ऊँचाई $1$ मीटर) पर पहुँचेगा, तो इसकी गतिज ऊर्जा ( $J$ में) का मान होगा: (दिखाया गया चित्र सांकेतिक है; $g$ का मान $10 \,ms ^{-2}$ लें)