$A$ અને $B$ ઘટનાઓ પૈકી ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના $0.6$ છે.જો $A$ અને $B$ ઘટનાઓ એકસાથે બંને તેની સંભાવના $0.2$ હોય,તો $P\,(\bar A) + P\,(\bar B) = $   

  • [IIT 1987]
  • A

    $0.4$

  • B

    $0.8$

  • C

    $1.2$

  • D

    $1.4$

Similar Questions

ઘટના ${\text{A, B}}$ છે   $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$  તો ${\text{P (A' }} \cap {\text{  B)}} = ......$

જો $\,P(A\, \cup \,\,B)\,\, = \,\,\frac{2}{3}\,,\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{6}\,\,$ અને $\,\,P(A)\,\, = \,\,\frac{1}{3}$  હોય 

જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$  તો  $ P   (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$

નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે : 

ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો.