સમીકરણ $9 x^{2}-18|x|+5=0$ ના બીજોનો ગુણાકાર .......... થાય
$\frac{25}{9}$
$\frac{25}{81}$
$\frac{5}{27}$
$\frac{5}{9}$
સમીકરણ $x = \sqrt {2 + \sqrt {2 + \sqrt {2 + .....} } } $ નો ઉકેલ.....છે.
સમીકરણ $|x||x+2|-5|x+1|-1=0$ નાં ભિન્ન વાસ્તવિક બીજ ની સંખ્યા ............ છે.
$ \alpha $ એ $x$ ની ન્યૂનતમ પૃણાંક કિમત છે કે જેથી $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ થાય તો .....
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?