समीकरण $9 x ^{2}-18| x |+5=0$ के मूलों का गुणनफल है
$\frac{25}{9}$
$\frac{25}{81}$
$\frac{5}{27}$
$\frac{5}{9}$
समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे
वक्रों $\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$ है, तो $\mathrm{S}$ में अवयवों की संख्या है :
माना द्विघात समीकरण $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है
सभी $a \in \mathbb{R}$, जिनके लिए समीकरण $\mathrm{x}|\mathrm{x}-1|+|\mathrm{x}+2|+\mathrm{a}=0$ का मात्र एक वास्तविक मूल है :