The projectile motion of a particle of mass $5\, g$ is shown in the figure.
The initial velocity of the particle is $5 \sqrt{2}\, ms ^{-1}$ and the air resistance is assumed to be negligible. The magnitude of the change in momentum between the points $A$ and $B$ is $x \times 10^{-2}\, kgms ^{-1} .$ The value of $x ,$ to the nearest integer, is ...... .
$10$
$8$
$3$
$5$
What is range of the projectile particle ? Give velocity of projectile particle at maximum height.
A cricket ball is thrown at a speed of $28\; m /s$ in a direction $30^o$ above the horizontal. Calculate
$(a)$ the maximum height,
$(b)$ the time taken by the ball to return to the same level, and
$(c)$ the distance from the thrower to the point where the ball returns to the same level
Two stones having different masses $m_1$ and $m_2$ are projected at an angle $\alpha$ and $\left(90^{\circ}-\alpha\right)$ with same speed from same point. The ratio of their maximum heights is
The ratio of the speed of a projectile at the point of projection to the speed at the top of its trajectory is $x$. The angle of projection with the horizontal is
A ball of mass $160\, g$ is thrown up at an angle of $60^{\circ}$ to the horizontal at a speed of $10 \,m / s$. The angular momentum of the ball at the highest point of the trajectory with respect to the point from which the ball is thrown is nearly $\left(g=10\, m / s ^{2}\right)$ (in $kgm ^{2} / s$)