The proposition $\left( { \sim p} \right) \vee \left( {p\, \wedge  \sim q} \right)$

  • [JEE MAIN 2017]
  • A

    $p \wedge \left( { \sim q} \right)$ 

  • B

    $p \to  \sim q$

  • C

    $q \to p$

  • D

    $p \vee \left( { \sim q} \right)$

Similar Questions

Negation of $p \wedge (\sim q \vee \sim r)$ is -

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]

Which of the following is an open statement

If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively

The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee  \sim q} \right)} \right) \wedge \left( { \sim p \wedge  \sim q} \right)$ is equivalent to

  • [JEE MAIN 2019]