The proposition $\left( { \sim p} \right) \vee \left( {p\, \wedge \sim q} \right)$
$p \wedge \left( { \sim q} \right)$
$p \to \sim q$
$q \to p$
$p \vee \left( { \sim q} \right)$
Negation of $p \wedge (\sim q \vee \sim r)$ is -
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is
Which of the following is an open statement
If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively
The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ is equivalent to