एक वृतीय गोले के पृष्ठ क्षेत्रफल के मापन में सापेक्ष त्रुटि $\alpha$ पायी गयी। उसी गोले के आयतन के मापन मं सापेक्ष त्रुटि होगी
$\frac{2}{3}\alpha $
$\frac{5}{2}\alpha $
$\frac{3}{2}\alpha $
$\alpha $
प्रतिरोध $R =\frac{ V }{ I }$, जहाँ $V =(50\, \pm 2) \,V$ और $I =(20 \pm 0.2)\, A$ है $R$ में प्रतिशत त्रुटि ' $x$ ' $\%$ है । ' $x$ ' का मान निकटतम पूर्णांक में $.........$ है।
यदि सभी स्वतंत्र राशियों (independent quantities) की मापन न्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की न्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को न्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है ( $\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी?
$(A)$ $\frac{\Delta a }{(1+ a )^2}$ $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$ $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$ $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है। यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, हैtion of the decay constant $\lambda$, in $s ^{-1}$, is
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
एक सरल लोलक की लम्बाई का मान $2 \mathrm{~mm}$ शुद्धता के साथ $20 \mathrm{~cm}$ मापा जाता है। $50$ दोलनों के लिए $1$ सेंकड शुद्धता के साथ मापा समय $40$ सेंकड है। इस माप से गुरूत्वीय त्वरण के मापन की शुद्धता $\mathrm{N} \%$ है। $\mathrm{N}$ का मान है :
किसी टॉर्कमीटर (बलाघूर्ण मापी) को द्रव्यमान, लम्बाई एवं समय के मानकों के सापेक्ष में अंशशोधित (कैलिब्रेट) किया गया है, जिनमें प्रत्येक की शुद्धता $5 \%$ है। अंशशोधन के पश्चात्, इस टॉर्कमीटर में मापे गए बलाघूर्ण की परिणामी शुद्धता होगी $...........\%$
किसी प्रयोग में चार राशियों $a , b , c$ तथा $d$ के मापन (नापने) में क्रमश: $1 \%, 2 \%, 3 \%$ तथा $4 \%$ की त्रुटि होती है। एक राशि $P$ का मान निम्नलिखित रूप से परिकलित किया जाता है : $P =\frac{ a ^{3} b ^{3}}{ cd }$ तो $P$ के मापन में प्रतिशत .......$(\%)$ त्रुटि होगी