$(5 \pm 0.5) \mathrm{kg}$ द्रव्यमान का एक पिण्ड, $(20 \pm 0.4) \mathrm{m} / \mathrm{s}$ के वेग से गति कर रहा है। इसकी गतिज ऊर्जा होगी
$(1000 \pm 140)\,J$
$(1000 \pm 0.14)\,J$
$(500 \pm 0.14)\,J$
$(500 \pm 140)\,J$
एक भौतिक राशि $X = {M^a}{L^b}{T^c}$ द्वारा प्रदर्शित है तथा $M,L$ एवं $T$ के मापन में प्रतिशत त्रुटि क्रमश: $\alpha ,\beta $ व $\gamma $ हे तो X में अधिकतम प्रतिशत त्रुटि होगी
एक सरल दोलक के प्रयोग, जिसमें गुरुत्वीय त्वरण $( g )$ मापना है, में $20$ दोलनों का समय एक $1 \,sec$. अल्पतमांक वाली एक विराम घड़ी से मापते हैं। इस समय का माध्य मान $30 \,s$ आता है। दोलक की लम्बाई को $1 \,mm$ अल्पतमांक के पैमाने से मापने पर $55.0 \,cm$ आती है। $g$ के मापन में प्रतिशत त्रुटि का सन्निकट मान .......... $\%$ होगा।
अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)
एक प्रकाशीय बेंच में एक $1.5 m$ लंबा पैमाना है जिसका प्रत्येक $cm$ चार बराबर भागों में विभाजित है। एक पतले उत्तल लेंस की फोकस दूरी के मापन के दौरान लेंस तथा वस्तु पिन को पैमाने पर क्रमशः $75 cm$ तथा $45 cm$ के चिन्हों पर रखा जाता है। लेंस के दूसरी तरफ वस्तु पिन का प्रतिबिम्ब $135 cm$ चिन्ह पर रखी प्रतिबिम्ब पिन से मिलता है। इस प्रयोग में लेंस के फोकस दूरी के मापन में प्रतिशत त्रुटि. . . . . है।
मापन की शुद्धता निर्धारित होती है