જો સમીકરણ $x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ના બીજો સમગુણોત્તર શ્રેણીમાં હોય અને તેમના વ્યસ્તનો સરવાળો $10$ થાય તો $\left| s \right|$ ની કિમત મેળવો
$4$
$24$
$28$
$32$
$\alpha$ અને $\beta$ એ સમીકરણ $x^{2}-3 x+p=0$ ના બીજો હોય તથા $\gamma$ અને $\delta$ એ સમીકરણ $x^{2}-6 x+q=0$ ના બીજો છે. જો $\alpha$ $\beta, \gamma, \delta$ એ સમગુણોત્તર શ્રેણીમાં હોય તો $(2 q+p):(2 q-p)$ મેળવો
જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{r^2}}}\,\, = \,\,.........} $
ધારોકે એક સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય ગુણોતર $r$ ધન પૂર્ણાકો છે.જો તેના પ્રથમ ત્રણ પદોના વર્ગોનો સરવાળો $33033$ હોય,તો આા ત્રણ પદોનો સરવાળો $.........$ થાય.
એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો.
જો સમગુણોતર શ્રેણીનું ત્રીજુ પદએ $4$ હોય તો પ્રથમ પાંચ પદોનો ગુણાકાર મેળવો.