બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ થાય.
Le the two numbers be $a$ and $b$
$G.M.$ $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$ ..........$(1)$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$ .........$(2)$
Adding $(1)$ and $(2),$ we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in $(1),$ we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
સમગુણોત્તર શ્રેણી $a + ar + ar^2 + ar^3 +..... \infty$ નો સરવાળો $7$ અને $r$ ની અયુગ્મ ઘાતવાળા પદોનો સરવાળો $'3'$, હોય તો $(a^2 -r^2)$ is કિમત મેળવો .
સમગુણોત્તર શ્રેણી ધન પદો ધરાવે છે. દરેક પદ બરાબર તે પછીના બે પદોનો સરવાળો તો શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?
સમગુણોતર શ્રેણીનાં પ્રથમ અને બીજા પદનો સરવાળો $12$ હોય અને ત્રીજા અને ચોથા પદ નો સરવાળો $48$ છે. જો સમગુણોતર શ્રેણીના ક્રમિક પદો ધન અને ૠણ હોય તો શ્રેણીનું પ્રથમ પદ મેળવો.
સમગુણોત્તર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $\frac{65}{12}$ અને તેમના વ્યસ્તનો સરવાળો $\frac{65}{18}$ છે. જે સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદનો ગુણાકાર $1$ અને ત્રીજુ પદ $\alpha$ હોય, તો $2 \alpha \,=.......$
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $ ની કિંમત શોધો.