બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ થાય.
Le the two numbers be $a$ and $b$
$G.M.$ $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$ ..........$(1)$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$ .........$(2)$
Adding $(1)$ and $(2),$ we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in $(1),$ we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ અને દરેક પદ તેના પછીના પદોના સરવાળા જેટલું હોય, તો તેનું ચોથું પદ કયું હશે ?
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$
જો $x, y, z$ સમાંતર શ્રેણીમાં અને $x, y, t$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, x - y, t - z$ કઈ શ્રેણીમાં હશે ?
$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?
શ્રેણી $\sqrt{3}, 3,3 \sqrt{3}, \ldots$ નું કેટલામું પદ $729$ થાય ?