સમીકરણ ${x^2} - |x + 2| + x > 0,$ માટે, $x$ ની વાસ્તવિક સંખ્યાઓનો ગણ મેળવો.
$( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$
$( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$
$( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$
$(\sqrt 2 ,\,\infty )$
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?
સમીકરણ $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ ના ઉકેલ માટે $a$ ની પૂર્ણાક સંખ્યાઓનો સરવાળો કેટલો થાય?
સમીકરણ $x^2 + 5 | x | + 4 = 0$ ના વાસ્તવિક બીજ કયા છે ?
જો $f(x)={{x}^{2}}-x+k-2,k\in R$ હોય તો $k$ ની કિમતોનો ગણ મેળવો કે જેથી $y=\left| f\left( \left| x \right| \right) \right|$ ને બિન્ન $5$ બિંદુઓ પર વિકલનીય ન થાય
જો $x$ એ વાસ્તવિક હોય તો વિધેેય $\frac{{(x - a)(x - b)}}{{(x - c)}}$ એ બધીજ વાસ્તવિક કિંમતો ધારણ કરી શકે છે જે . . . શરત આપવમાં આવે .