${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}} = . . . .$
$49$
$625$
$216$
$890$
જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$ $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
સમીકરણ $log_7(2^x -1) + log_7(2^x -7) = 1$ ના ઉકેલોની સંખ્યા મેળવો.
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
${\log _{0.2}}{{x + 2} \over x} \le 1$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.