पानी में उत्पन्न तरंग की चाल $v=\lambda^a g^b \rho^c$ द्वारा दी गई है, जहाँ $\lambda, g$ एवं $\rho$ क्रमशः तरंग का तरंगदैर्ध्य, गुरुत्वीय त्वरण एवं पानी का घनत्व हैं। $a, b$ एवं $c$ का मान क्रमश: है:
$\frac{1}{2}, \frac{1}{2}, 0$
$1,1,0$
$1,-1,0$
$\frac{1}{2}, 0, \frac{1}{2}$
यदि चाल $V$, क्षेत्रफल $A$ एवं बल $F$ को मूल इकाई लिया जाए तो यंग-गुणांक की विमा होगी
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
ऊर्जा घनत्व का व्यंजक निम्नवत है $u =\frac{\alpha}{\beta} \sin \left(\frac{\alpha x }{ kt }\right)$, जहाँ $\alpha$ एवं $\beta$ स्थिरांक हैं, $x$ विस्थापन है, $k$ वोल्टजमैन स्थिरांक है एवं $t$ तापमान है। $\beta$ की विमाऐं होंगी :
यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी
यदि $v$ चाल, $r = $ त्रिज्या तथा $g$ गुरुत्वीय त्वरण हो तो विमाहीन राशि होगी