Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$
$p \wedge q$
$p \wedge \sim q$
$\sim p\ \wedge q$
$\sim p\; \wedge \sim q$
If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively
The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow q ]$ is
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
The conditional $(p \wedge q) \Rightarrow p$ is :-
For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is