Mathematical Reasoning
hard

The Statement that is $TRUE$ among the following is

A

The contrapositive of $3x + 2 = 8 \Rightarrow x = 2$ is $x\ne 2$ $\Rightarrow 3x + 2\ne 8.$

B

The converse of $tan\,x\,=0\,\Rightarrow  x = 0$ is $x\ne 0\,\Rightarrow tan\,x = 0.$

C

$p \Rightarrow  q$ is equivalent to $p\, \vee \, \sim \,q.$

D

$p \vee q$ and $p\, \wedge \,q$ have the same truth table.

(AIEEE-2012)

Solution

Only statement given in option 

$(a)$  is true.

$(b)$ The converse of 

         $\tan \,x = 0 \Rightarrow x = 0$ is

         $x = 0 \Rightarrow \tan \,x = 0$

          $\therefore $ Statement $(b)$ is false

$(c)$ $ \sim \left( {p \Rightarrow q} \right)$ is equivalent to ${p \wedge  \sim q}$

           $\therefore $ Statement given in option $(c)$ is false.

$(d)$ No, ${p \vee q}$ and ${p \wedge q}$ does not have the same truth vale.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.