સમગુણોત્તર શ્રેણીનાં પ્રથમ $3$ પદોનો સરવાળો $16$ છે અને પછીનાં ત્રણ પદોનો સરવાળો $128$ છે, તો આ શ્રેણીનું પ્રથમ પદ, સામાન્ય ગુણોત્તર અને $n$ પદોનો સરવાળો શોધો.
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3}, \ldots .$ According to the given condition,
$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$
$\Rightarrow a\left(1+r+r^{2}\right)=16$ .........$(1)$
$a r^{3}\left(1+r+r^{2}\right)=128$ .........$(2)$
Dividing equation $(2)$ by $(1),$ we obtain
$\frac{a r^{3}\left(1+r+r^{3}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}$
$\Rightarrow r^{3}=8$
$\therefore r=2$
Substituting $r=2$ in $(1),$ we obtain $a(1+2+4)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$
સમગુણોત્તર શ્રેણી $2,8,32, \ldots$ $n$ પદ સુધી, માટે કયું પદ $131072$ હશે ?
અનંત સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $20$ છે. અને તેમના વર્ગનો સરવાળો $10$ છે. તો સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?
જો $x,\;y,\;z$ એ સમગુણોતર શ્નેણીમાંં હોય અને ${a^x} = {b^y} = {c^z}$ તે
એક સમગુણોત્તર શ્રેણીનાં બધાં પદ ધન છે. તેનું દરેક પદ, તે પદ પછીનાં બે પદના સરવાળા જેટલું હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર.... હશે.
$2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ ની કિમંત મેળવો.