तीन समांतर श्रेणियों
$3,7,11,15, \ldots \ldots . . . ., 399$,
$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा
$2,7,12,17, \ldots \ldots . ., 197$,
के उभ्यनिष्ठ पदों का योग है ____________I
$322$
$321$
$324$
$328$
यदि $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रम के वर्गों के योग के बराबर हो, तो $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ होंगे
श्रेणी $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ के $24$ पदों का योगफल है
श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध होगा