शमशाद अली $22000$ रुपये में एक स्कूटर खरीदता है। वह $4000$ रुपये नकद देता है तथा शेष राशि को $1000$ रुपयें वार्षिक किश्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो $10 \%$ वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that Shamshad Ali buys a scooter for $Rs.$ $22000$ and pays $Rs.$ $4000$ in cash.

$\therefore $ Unpaid amount $=$ $Rs.$ $22000-$ $Rs.$ $4000=$ $Rs.$ $18000$

According to the given condition, the interest paid annually is

$10 \%$ of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots \ldots 10 \%$ of $1000$

Thus, total interest to be paid

$=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots \ldots+10 \%$ of $1000$

$=10 \%$ of $(18000+17000+16000+\ldots \ldots+1000)$

$=10 \%$ of $(1000+2000+3000+\ldots \ldots+18000)$

Here, $1000,2000,3000 \ldots .18000$ forms an $A.P.$ with first term and common difference both equal to $1000$

Let the number of terms be $n$

$\therefore 18000=1000+(n-1)(1000)$

$\Rightarrow n=18$

$\therefore 1000+2000+\ldots .+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]$

$=9[2000+17000]$

$=171000$

Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots .+1000)$

$=10 \%$ of $Rs .171000= Rs .17100$

$\therefore$ cost of scooter $= Rs .22000+ Rs .17100= Rs .39100$

Similar Questions

यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं

यदि $\frac{1}{3}$ और $\frac{1}{{24}}$ के मध्य दो समान्तर माध्य पद ${A_1}$ व ${A_2}$ हों, तब ${A_1}$ व ${A_2}$ का मान होगा

दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है 

  • [JEE MAIN 2014]

श्रेणी $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ का कौन सा पद शुद्ध अधिकल्पित संख्या है

यदि ${S_n}$ समान्तर श्रेणी के $n$ पदों का योगफल दर्शाता हो, तो $({S_{2n}} - {S_n})$ का मान है