शमशाद अली $22000$ रुपये में एक स्कूटर खरीदता है। वह $4000$ रुपये नकद देता है तथा शेष राशि को $1000$ रुपयें वार्षिक किश्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो $10 \%$ वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that Shamshad Ali buys a scooter for $Rs.$ $22000$ and pays $Rs.$ $4000$ in cash.

$\therefore $ Unpaid amount $=$ $Rs.$ $22000-$ $Rs.$ $4000=$ $Rs.$ $18000$

According to the given condition, the interest paid annually is

$10 \%$ of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots \ldots 10 \%$ of $1000$

Thus, total interest to be paid

$=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots \ldots+10 \%$ of $1000$

$=10 \%$ of $(18000+17000+16000+\ldots \ldots+1000)$

$=10 \%$ of $(1000+2000+3000+\ldots \ldots+18000)$

Here, $1000,2000,3000 \ldots .18000$ forms an $A.P.$ with first term and common difference both equal to $1000$

Let the number of terms be $n$

$\therefore 18000=1000+(n-1)(1000)$

$\Rightarrow n=18$

$\therefore 1000+2000+\ldots .+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]$

$=9[2000+17000]$

$=171000$

Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots .+1000)$

$=10 \%$ of $Rs .171000= Rs .17100$

$\therefore$ cost of scooter $= Rs .22000+ Rs .17100= Rs .39100$

Similar Questions

यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -

  • [JEE MAIN 2020]

अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ जहाँ $n \geq 2$

यदि $A =\left\{1, a _1, a _2 \ldots \ldots a _{18}, 77\right\}$ पूर्णांको का एक समुच्चय है जिसमें $1 < a _1 < a _2 < \ldots . . < a _{18} < 77$ है। माना समुच्चय $A + A =\{ x + y : x , y \in A \}$ में ठीक $39$ अवयव है। तब $a_1+a_2+\ldots . .+a_{18}$ का मान होगा

  • [JEE MAIN 2022]

${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ..... + {\log _{\sqrt[{16}]{3}}}x = 36$ का हल है

निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$