${\left( {{2^{\frac{1}{2}}} + {3^{\frac{1}{5}}}} \right)^{10}}$ ના વિસ્તરણમાં રહેલા સંમેય પદોનો સરવાળો મેળવો.
$25$
$32$
$9$
$41$
જો ${(1 + x)^{2n + 2}}$ ના વિસ્તરણમાં મધ્યમપદનો સહગુણક $p$ હોય અને ${(1 + x)^{2n + 1}}$ ના વિસ્તરણમાં મધ્યમપદનો સહગુણકના સહગુણકો $q$ અને $r$ હોય , તો . . . .
જો કોઈ ધન પૂર્ણાક સંખ્યા $n$ માટે $(1+x)^{n+5}$ ના વિસ્તરણમાં $x$ ની ઘાતમાં વધારો થાય અને આ વિસ્તરણમા ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $5: 10: 14$ હોય તો આ વિસ્તરણમાં સૌથી મોટો સહગુણક મેળવો
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
જો $p$ અને $q$ એ ધન હોય , તો ${(1 + x)^{p + q}}$ ના વિસ્તરણમાં ${x^p}$ અને ${x^q}$ નો સહગુણક મેળવો.
${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.