સમીકરણ ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ ના ઉકેલો નો સરવાળો ...... થાય.
$2$
$-2$
$\sqrt 2$
$-\sqrt 2$
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
સમીકરણ $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ નાં તમામ બીજ ના ધનોંનો સરવાળો $\dots\dots\dots$ છે.
સમીકરણ $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ ને
જો $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, તો $y$ પણ વાસ્તવિક કિમંત ધરાવે તેના માટે $x$ ની વાસ્તવિક કિમંતો . . . .