समीकरण
$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$
के मूलों का योग है
$\log _{2} 14$
$\log _{2} 11$
$\log _{2} 12$
$\log _{2} 13$
यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$
का एक गुणनखण्ड हो, तो $p = $
मान लें कि $a, b$ अशून्य वास्तविक संख्याएँ हैं तो द्विघात $(quadratic)$ समीकरण $a x^2+(a+b) x+b=0$
के बारे में निम्नलिखित में से कौन से कथन निश्चय ही सत्य हैं?
$(I)$ इसका कम से कम एक शून्यक (root) ऋणात्मक होगा।
$(II)$ इसका कम से कम शक शून्यक धनात्मक होगा।
$(III)$ इसके दोनों शून्यक वास्तविक हैं।
यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$
( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:
माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।
यदि $x,\;y,\;z$ वास्तविक व भिन्न हों, तो $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$हमेशा होगा