The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is

Vedclass pdf generator app on play store
Vedclass iOS app on app store

(d) Clearly it is a infinite $G.P.$ whose common ratio is $0.24.$

$\therefore {S_\infty } = \frac{a}{{1 - r}} $

$= \frac{{5.05}}{{1 - 0.24}} = 6.64474$.

Similar Questions

If $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ then $S$ is equal to

  • [JEE MAIN 2020]

The first term of a $G.P.$ is $7$, the last term is $448$ and sum of all terms is $889$, then the common ratio is

The sum of first four terms of a geometric progression $(G.P.)$ is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18} .$ If the product of first three terms of the $G.P.$ is $1,$ and the third term is $\alpha$, then $2 \alpha$ is ....... .

  • [JEE MAIN 2021]

The first two terms of a geometric progression add up to $12.$ the sum of the third and the fourth terms is $48.$ If the terms of the geometric progression are alternately positive and negative, then the first term is

  • [AIEEE 2008]

A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs $50$ paise to mail one letter. Find the amount spent on the postage when $8^{\text {th }}$ set of letter is mailed.