$x \in (0,4\pi )$ માં સમીકરણ $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ ના ઉકેલોનો સરવાળો મેળવો
$6\pi $
$4\pi $
$3\pi $
એક પણ નહીં
જો $2{\tan ^2}\theta = {\sec ^2}\theta , $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $0 \le x \le \pi $ અને ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, તો $x =$
જો $\tan \theta = - \frac{1}{{\sqrt 3 }}$ અને $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, તો $\theta $ ની કિમત મેળવો.
અહી $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ આપલે છે. તો ગણ $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ ની સભ્ય સંખ્યા $...$ થાય.
સમીકરણ $\sin x=\frac{\sqrt{3}}{2}$ ના મુખ્ય ઉકેલ શોધો.