दो समांतर श्रेढ़ियों के $n$ पदों के योगफल का अनुपात $5 n+4: 9 n+6 .$ हो, तो उनके $18$ वे पदों का अनुपात ज्ञात कीजिए।
Let $a_{1}, a_{2}$ and $d_{1}, d_{2}$ be the first terms and the common difference of the first and second arithmetic progression respectively.
According to the given condition,
$\frac{{{\rm{ Sum }}\,\,{\rm{of }}\,\,n\,\,{\rm{ terms }}\,\,{\rm{of}}\,\,{\rm{ first}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{\rm{ Sum}}\,\,{\rm{ of }}\,\,n{\rm{ }}\,\,{\rm{terms }}\,\,{\rm{of }}\,\,{\rm{second}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{5n + 4}}{{9n + 6}}$
$\Rightarrow \frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6}$
$\Rightarrow \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+4}{9 n+5}$ ..........$(1)$
Substituting $n=35$ in $(1),$ we obtain
$\frac{2 a_{1}+34 d_{1}}{2 a_{2}+34 d_{2}}=\frac{5(35)+4}{9(35)+6}$
$\Rightarrow \frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321}$ ...........$(2)$
$\frac{{{{18}^{th}}\,\,{\rm{ term}}\,\,{\rm{of}}\,\,{\rm{ first }}}}{{{{18}^{th}}\,\,{\rm{ term }}\,\,{\rm{of }}\,\,{\rm{second}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{{a_1} + 17{d_1}}}{{{a_2} + 17{d_2}}}$ ............$(3)$
From $(2)$ and $(3),$ we obtain
$\frac{{{{18}^{{\rm{th }}}}\,\,{\rm{ term}}\,\,{\rm{ of }}\,\,{\rm{first }}}}{{{{18}^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ second }}\,\,{\rm{A}}{\rm{.P}}{\rm{. }}}} = \frac{{179}}{{321}}$
Thus, the ratio of $18^{\text {th }}$ term of both the $A.P.$s is $179: 321 .$
यदि किसी समान्तर श्रेणी के $n$ पदों का योगफल $nA + {n^2}B$, जहाँ $A,B$ नियतांक हैं, है। तो इनका सार्वअन्तर होगा
माना एक समांतर श्रेढ़ी के प्रथम $2 n$ पदों का योगफल $S _{1}$ है। माना उसी समांतर श्रेढ़ी के प्रथम $4 n$ पदों का योगफल $S_{2}$ है। यदि $\left(S_{2}-S_{1}\right)=1000$ है, तो इस समांतर श्रेढ़ी के प्रथम $6 n$ पदों का योग बराबर है
$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।
माना ${S_n}$ एक समान्तर श्रेणी के $n$पदों का योग दर्शाता है। यदि ${S_{2n}} = 3{S_n}$, तो अनुपात $\frac{{{S_{3n}}}}{{{S_n}}} = $
माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$