સુરેખ સમીકરણ સંહતિ $3 x-2 y-k z=10$ ; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ સુસંગત ન હોય તો
$k =3, m =\frac{4}{5}$
$k \neq 3, m \in R$
$k \neq 3, m \neq \frac{4}{5}$
$k =3, m \neq \frac{4}{5}$
સમીકરણની સંહતિ $a + b - 2c = 0,$ $2a - 3b + c = 0$ અને $a - 5b + 4c = \alpha $ એ સુસંગત થવા માટે $\alpha$ મેળવો.
જો $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$અને $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, તો $B =$
જો $ A, B, C$ એ ત્રિકોણના ખૂણા હોય , તો $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
$\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right| = . . . $
જો $m$ અને $M$ એ $\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$. ની અનુક્રમે ન્યૂનતમ અને મહત્તમ કિમત દર્શાવતા હોય તો $( m , M )$ ની કિમત શોધો