જો અતિવલય $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1$ ના પ્રથમ ચરણમાં નાભીલંબનો સ્પર્શક $x-$ અક્ષ અને $y-$ અક્ષને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે તો $(OA)^2 - (OB)^2$ = ...................... જ્યાં $O$ એ ઉંગમબિંદુ
$ - \frac{{20}}{9}$
$ \frac{{16}}{9}$
$4$
$ - \frac{{4}}{3}$
જો પ્રમાણિત અતિવલયની ઉત્કેન્દ્ર્તા $2$ હોય જે બિંદુ $(4, 6)$ માંથી પસાર થતું હોય તો બિંદુ $(4, 6)$ આગળ અતિવલયનો સ્પર્શક મેળવો.
એક રેખા $2 x-y=0$ ને સમાંતર રેખા અને અતિવલય $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ ને બિંદુ $\left(x_{1}, y_{1}\right)$ આગળ સ્પર્શક હોય તો $x_{1}^{2}+5 y_{1}^{2}$ ની કિમત મેળવો
$T$ એ વક્ર $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ અને $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ નો સામાન્ય સ્પર્શક છે જે ચોથા ચરણમાંથી પસાર નથી થતો. જો $T$ એ $C _{1}$ ને ( $\left.x _{1}, y _{1}\right)$ અને $C _{2}$ ને $\left( x _{2}, y _{2}\right)$ આગળ સ્પર્શે છે તો $\left|2 x _{1}+ x _{2}\right|$ ની કિમંત $......$ થાય.
જો $\left( {{\text{k,}}\,\,{\text{2}}} \right)$ માંથી પસાર થતા અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\, $ ની ઉત્કેન્દ્રતા $\frac{{\sqrt {13} }}{3}\,$ હોય,તો ${k^2}\,$ નું મૂલ્ય:
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$