10-1.Circle and System of Circles
hard

જો વર્તુળ $C_1 : x^2 + y^2 - 2x- 1\, = 0$ પરના બિંદુ $(2, 1)$ પાસે આવેલ સ્પર્શક વર્તુળ $C_2$ જેનું કેન્દ્ર $(3, - 2)$ હોય તેની જીવા છે જેની લંબાઈ $4$ થાય તો વર્તુળ $C_2$ ની ત્રિજ્યા મેળવો. 

A

$\sqrt 6 $

B

$2$

C

$\sqrt 2 $

D

$3$

(JEE MAIN-2018)

Solution

Here, equation of tangent on ${C_1}$ at $\left( {2,1} \right)$ is:

$2x + y – \left( {x + 2} \right) – 1 = 0$

Or $x + y = 3$

If it cuts off the chord of the circle ${C_2}$ then

the equation of the chord is :

$x + y = 3$

$\therefore $ distance of the chord from $(3,-2)$ is:

$d = \left| {\frac{{3 – 2 – 3}}{{\sqrt 2 }}} \right| = \sqrt 2 $

Also, length of the chord is $l=4$

$\therefore $ redius of ${C_2}\,\, = r = \sqrt {{{\left( {\frac{l}{2}} \right)}^2} + {d^2}} $

$\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {{{\left( 2 \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}  = \sqrt 6 $

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.