${\left( {{x^2} - \frac{1}{x}} \right)^9}$ के प्रसार में $x$ से स्वतंत्र पद होगा
$1$
$-1$
$-48$
इनमें से कोई नहीं
$8(x+a)^{n}$ के द्विपद प्रसार के दूसरे, तीसरे और चौथे पद क्रमश: $240,720$ और $1080$ हैं। $x, a$ तथा $n$ ज्ञात कीजिए।
$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है
${(a + b)^n}$ के विस्तार में चतुर्थ पद $56$ हो, तो $n$ का मान होगा
${(1 + x)^n}$ के विस्तार में $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश: $p $ व $q$ हों, तो $p + q = $
यदि $a$ और $b$ भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि $\left(a^{n}-b^{n}\right)$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णांक है।