दोनों सिरों पर परिबद्ध किसी तानित डोरी पर अनुप्रस्थ विस्थापन को इस प्रकार व्यक्त किया गया है

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$

जिसमें $x$ तथा $y$ को $m$ तथा $t$ को $s$ में लिया गया है । इसमें डोरी की लंबाई $1.5 \,m$ है जिसकी संहति $3.0 10^{-2}\, kg$ है । निम्नलिखित का उत्तर दीजिए :

$(a)$ यह फलन प्रगामी तरंग अथवा अप्रगामी तरंग में से किसे निरूपित करता है ?

$(b)$ इसकी व्याख्या विपरीत दिशाओं में गमन करती दो तरंगों के अध्यारोपण के रूप में करते हुए प्रत्येक तरंग की तरंगदैर्ध्य , आवृत्ति तथा चाल ज्ञात कीजिए

$(c)$ डोरी में तनाव ज्ञात कीजिए

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The general equation representing a stationary wave is given by the displacement function

$y(x, t)=2 a \sin k x \cos \omega t$

This equation is similar to the given equation:

$y(x, t)=0.06 \sin \left(\frac{2}{3} x\right) \cos (120 \pi t)$

Hence, the given function represents a stationary wave.

A wave travelling along the positive $x$ -direction is given as:

$y_{1}=a \sin (\omega t-k x)$

The wave travelling along the negative $x$ -direction is given as:

$y_{2}=a \sin (\omega t+k x)$

The superposition of these two waves yields:

$y=y_{1}+y_{2}=a \sin (\omega t-k x)-a \sin (\omega t+k x)$

$=a \sin (\omega t) \cos (k x)-a \sin (k x) \cos (\omega t)-a \sin (\omega t) \cos (k x)-a \sin (k x) \cos (\omega t)$

$=-2 a \sin (k x) \cos (\omega t)$

$=-2 a \sin \left(\frac{2 \pi}{\lambda} x\right) \cos (2 \pi v t)\dots(i)$

The transverse displacement of the string is given as

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)\dots(ii)$

Comparing equations ( $i$ ) and $(ii)$, we have:

$\frac{2 \pi}{\lambda}=\frac{2 \pi}{3}$

Wavelength, $\lambda=3 \,m$

It is given that:

$120 \pi=2 \pi v$

Frequency, $v=60 \,Hz$

Wave speed, $v=v \lambda$

$=60 \times 3=180 \,m / s$

The velocity of a transverse wave travelling in a string is given by the relation:

$v=\sqrt{\frac{T}{\mu}}$

Where,

Velocity of the transverse wave, $v=180 \,m / s$

Mass of the string, $m=3.0 \times 10^{-2} \,kg$

Length of the string, $l=1.5 \,m$

Mass per unit length of the string, $\mu=\frac{m}{l}$

$=\frac{3.0}{1.5} \times 10^{-2}$

$=2 \times 10^{-2}\, kg\, m ^{-1}$

Tension in the string $=T$

$T=v^{2} \mu$

$=(180)^{2} \times 2 \times 10^{-2}$

$=648\, N$

Similar Questions

$9 \times 10^{-3} \,kg \,cm ^{-3}$ घनत्व के एक तार को खींचकर $1$ मीटर दूरी पर लगे दो क्लैम्प्स् पर कस दिया जाता है। इस कारण तार में उत्पन्न विकृति (strain) $4.9 \times 10^{-4}$ हैं। इस स्थिति में तार में अनुप्रस्थ कंपन की निम्नतम आवृत्ति के निकटतम पूर्णांक कितना होगा (तार के यंग गुणांक का मान $\left.Y =9 \times 10^{10} \,Nm ^{-2}\right)$

  • [JEE MAIN 2020]

एक एकसमान पतली रस्सी जिसकी लम्बाई $12\, m$ और द्रव्यमान $6\, kg$ है ऊर्ध्वाधर लटकी हुई है और इसके निचले सिरे पर $2\, kg$ द्रव्यमान का एक खण्ड लटका हुआ है। इसके निचले सिरे पर $6\, cm$ तरंगदैर्ध्य की एक अनुप्रस्थ तरंगावलि (wavetrain) बनायी जाती है। जब यह रस्सी के ऊपरी छोर पर पहुँचेगी तो इस तरंगावलि का तरंगदैर्ध्य $( cm$ में) होगा।

  • [JEE MAIN 2020]

द्रव की सतह पर बनने वाली यांत्रिक तरंगें हैं

$5 \,g / m$ रेखीय घनत्व वाली तनी हुई डोरी में प्रगामी तरंग का समीकरण निम्न है :

$y =0.03 \sin (450 t -9 x )$ जहाँ दूरी और समय $SI$ मात्रकों में हैं। डोरी में तनाव $.......\,N$ है।

  • [JEE MAIN 2019]

$1 m$ लम्बी एवं $2 \times 10^{-5} kg$ द्रव्यमान वाली एक डोरी (string) में तनाव $T$ है। जब डोरी कम्पन करती है तब दो उत्तरोत्तर गुणावृत्तियों (successive harmonics) की आवृत्तियाँ $750 Hz$ तथा $1000 Hz$ पायी जाती हैं| तनाव $T$ का मान. . . . . . .Newton है।

  • [IIT 2023]