- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
medium
The two circles ${x^2} + {y^2} - 2x + 22y + 5 = 0$ and ${x^2} + {y^2} + 14x + 6y + k = 0$ intersect orthogonally provided $k$ is equal to
A
$47$
B
$ - 47$
C
$49$
D
$ - 49$
Solution
(a) Given two circles
${x^2} + {y^2} – 2x + 22y + 5 = 0$
${x^2} + {y^2} + 14x + 6y + k = 0$
The two circles cut orthogonally, if
$2({g_1}{g_2} + {f_1}{f_2}) = {c_1} + {c_2}$
$i.e.$, $2( – 1.7 + 11.3) = 5 + k$
$2( – 7 + 33) = 5 + k $
$\Rightarrow 52 – 5 = k$
$\Rightarrow k = 47$.
Standard 11
Mathematics