दो वृत्त ${x^2} + {y^2} - 2x + 22y + 5 = 0$ व ${x^2} + {y^2} + 14x + 6y + k = 0$ लम्बवत् प्रतिच्छेदित करेंगे यदि $k =$
$47$
$ - 47$
$49$
$ - 49$
यदि वृत्त ${x^2} + {y^2} = {a^2}$ तथा ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ एक-दूसरे को बाह्यत: स्पर्श करते हों, तो
दो वृत्त ${x^2} + {y^2} = 144$ तथा ${x^2} + {y^2} - 15x + 12y = 0$ के मूलाक्ष का समीकरण होगा
वृत्त ${x^2} + {y^2} = {a^2}$ की जीवा $x\cos \alpha + y\sin \alpha = p$ को व्यास मानकर खींचे गये वृत्त का समीकरण है
दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है