$\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ ની કિમંત મેળવો.
$1124$
$1134$
$1024$
$924$
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.
વિધેય $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ નુ $x$ ની ધાતાકમાં વિસ્તરણ ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ હોય તો ${a_n}$ મેળવો.
${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.
જો $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$ હોય તો $L$ ની કિમંત $.....$ થાય.
ધારો કે $(1+x)^{10}$ ના વિસ્તરણમાં $x^{ r }$ નો દ્વિપદ્દી સહગગણક $C _{ r }$ વડે દર્શાવાય છે. જો $\alpha, \beta \in R$ માટે, $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots 10$ પદો સુધી = $\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left(C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots 10\right.$ પદો સુધી $)$, તો $\alpha+\beta$ ની કિમત ....... છે.