$(1 +x)^{101}  (1 +x^2 - x)^{100}$ ના વિસ્તરણમાં પદની સંખ્યા મેળવો.

  • [JEE MAIN 2014]
  • A

    $302$

  • B

    $301$

  • C

    $202$

  • D

    $101$

Similar Questions

If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે

  • [JEE MAIN 2022]

$2.{}^{20}{C_0} + 5.{}^{20}{C_1} + 8.{}^{20}{C_2} + 11.{}^{20}{C_3} + ......62.{}^{20}{C_{20}}$ =  

  • [JEE MAIN 2019]

 $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ ના વિસ્તરણમાં $x^9$ નો સહગુણક મેળવો 

${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

અહી ${ }^{n} C_{r}$ એ $(1+ x )^{ n }$ ના વિસ્તરણમાં $x^{r}$ નો સહગુણક દર્શાવે છે. જો $\sum_{ k =0}^{10}\left(2^{2}+3 k \right){ }^{ n } C _{ k }=\alpha .3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$ તો $\alpha+\beta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]