माना $r = 1,\;2,\;3,....$ के लिये एक समान्तर श्रेणी का $r$ वाँ पद ${T_r}$ है। यदि किन्हीं धनात्मक पूर्णांकों $m,\;n$ के  लिये ${T_m} = \frac{1}{n}$ और ${T_n} = \frac{1}{m}$ हों, तो ${T_{mn}}$ का मान होगा

  • [IIT 1998]
  • A

    $\frac{1}{{mn}}$

  • B

    $\frac{1}{m} + \frac{1}{n}$

  • C

    $1$

  • D

    $0$

Similar Questions

माना $10 A.P.$, जिनके प्रथम पद $1,2,3, \ldots, 10$ तथा आर्व अंतर क्रमशः $1,3,5, \ldots, 19$ हैं, के $12$ पदों का योग क्रमश: $\mathrm{s}_1, \mathrm{~s}_2, \mathrm{~s}_3, \ldots, \mathrm{s}_{10}$ है। तो $\sum_{\mathrm{i}=1}^{10} \mathrm{~s}_{\mathrm{i}}$ बराबर है

  • [JEE MAIN 2023]

माना $3,7,11,15, \ldots, 403$ तथा $2,5,8,11, \ldots$ $404$ दो समान्तर श्रेढ़ियाँ है तो इनमें उभयनिष्ठ पदों का योग है .............

  • [JEE MAIN 2024]

दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है 

  • [JEE MAIN 2014]

यदि किसी समान्तर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ और $q$ वाँ पद $\frac{1}{p}$ है, तो इसके $pq$ पदों का योग होगा

माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है

  • [IIT 2015]