$cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ = 

  • A

    $\frac{1 }{{32}}$

  • B

    $\frac{1}{{16}}$

  • C

    $\frac{{\cos \,\,\left( {\pi /10} \right)}}{{16}}$

  • D

    $-\frac{{\sqrt {10\,\, + \,\,2\sqrt 5 } }}{{64}}$

Similar Questions

જો $cos A = {3\over 4} , $ તો $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $

જો $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ હોય તો  $\left( {\frac{{a + c}}{{b + d}}} \right)$ = 

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

જો $x + y = 3 - cos4\theta$ અને $x - y = 4 \,sin2\theta$ હોય તો 

જો $\alpha $ સમીકરણ $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $, નું એક બીજ હોય તો $\sin 2\alpha   = . . .$