The value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&{a\, + \,b}&{a\, + \,2b}\\{a\, + \,2b}&a&{a\, + \,b}\\{a\, + \,b}&{a\, + \,2b}&a\end{array}\,} \right|$ is

  • A
    $9a^2 (a + b)$
  • B
    $9b^2 (a + b)$
  • C
    $3b^2 (a + b)$
  • D
    $7a^2 (a + b)$

Similar Questions

Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
  1&1&1 \\ 
  2&b&c \\ 
  4&{{b^2}}&{{c^2}} 
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval

  • [JEE MAIN 2019]

$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to

The number of positive integral solutions of the equation $\left| {\begin{array}{*{20}{c}}{{x^3} + 1}&{{x^2}y}&{{x^2}z}\\{x{y^2}}&{{y^3} + 1}&{{y^2}z}\\{x{z^2}}&{y{z^2}}&{{z^3} + 1}\end{array}} \right|$ $= 11$ is

$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $

If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in