- Home
- Standard 11
- Mathematics
9.Straight Line
normal
The vertex of a right angle of a right angled triangle lies on the straight line $2x + y - 10 = 0$ and the two other vertices, at points $(2, -3)$ and $(4, 1)$ then the area of triangle in sq. units is
A
$\sqrt{10}$
B
$3$
C
$\frac{33}{5}$
D
$11$
Solution

$M_1M_2 = -1 $
$\frac{{9 – 2a}}{{a – 4}}\,\,\times\,\,\frac{{13 – 2a}}{{a – 2}} = -1$
$117 – 26a – 18a + 4a^2 = -(a^2 – 6a + 8)$
$5a^2 – 50a + 125 = 0$
$a = 5$
so $B$ is $(5, 0)$
so area $= \frac {1}{2} AB × AC = \frac{1}{2} \sqrt{2} × 3 \sqrt{2} = 3 $
Standard 11
Mathematics