If $f$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ find the value of $n$
It is given that,
$f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ .....$(1)$
$f(1)=3$
Taking $x=y=1$ in $(1)$
We obtain $f(1+1)=f(2)=f(1) f(1)=3 \times 3=9$
Similarly,
$f(1+1+1)=f(3)=f(1+2)=f(1) f(2)=3 \times 9=27$
$f(4)=f(1+4)=f(1) f(3)=3 \times 27=81$
$\therefore f(1), f(2), f(3), \ldots \ldots,$ that is $3,9,27, \ldots \ldots,$ forms a $G.P.$ with both the first term and common ratio equal to $3 .$
It is known that, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
It is given that, $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $
$\therefore 120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3}{2}\left(3^{n}-1\right)$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81=3^{4}$
$\therefore n=4$
Thus, the value of $n$ is $4$
The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set
Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ?
Let $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ where the function $f$ satisfies $f(x + y) = f(x) f(y)$ for all natural numbers $x, y$ and $f(1) = 2.$ Then the natural number $‘ a '$ is
Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval
Range of the function , $f (x) = cot ^{-1}$ $\left( {{{\log }_{4/5}}\,\,(5\,{x^2}\,\, - \,\,8\,x\,\, + \,\,4)\,} \right)$ is :