Three coins are tossed once. Let $A$ denote the event ' three heads show ', $B$ denote the event ' two heads and one tail show ' , $C$ denote the event ' three tails show and $D$ denote the event 'a head shows on the first coin '. Which events are simple ?
When three coins are tossed, the sample space is given by
$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$
Accordingly,
$A=\{H H H\}$
$B =\{ HHT ,\, HTH ,\, THH \}$
$C =\{ TTT \}$
$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$
We now observe that
$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$
$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$
$C \cap D=\phi$
If an event has only one sample point of a sample space, it is called a simple event. Thus, $A$ and $C$ are simple events.
The probability of choosing at random a number that is divisible by $6$ or $8$ from among $1$ to $90$ is equal to
A coin is tossed $3$ times by $2$ persons. What is the probability that both get equal number of heads
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
There are two childrens in a family. The probability that both of them are boys is
Two dice are tossed. The probability that the total score is a prime number is