बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है

  • [AIEEE 2003]
  • [IIT 1988]
  • A

    $\frac{{{k_1}}}{{{k_2}}}$

  • B

    $\sqrt {\frac{{{k_1}}}{{{k_2}}}} $

  • C

    $\frac{{{k_2}}}{{{k_1}}}$

  • D

    $\sqrt {\frac{{{k_2}}}{{{k_1}}}} $

Similar Questions

एक क्षैतिज घर्षण रहित मेज पर एक ब्लॉक रखा है। इस ब्लॉक का द्रव्यमान $m$ है और दोनों ओर स्प्रिंग् लगी हैं जिनके बल स्थिरांक ${k_1}$ और ${k_2}$ है। यदि इस ब्लॉक को थोडा विस्थापित करके छोड़ दिया जाये तो दोलन की कोणीय आवृत्ति होगी

दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है

एक हल्की, उध्र्वाधर लटकी स्प्रिंग के निचले सिरे से जुड़ा हुआ कण कम्पन कर रहा है। कण का अधिकतम वेग $15$ मी/सै है तथा दोलनकाल $628$ मिली सैकण्ड है। गति का आयाम (सेमी में)

स्प्रिंग् वाली घड़ी को चन्द्रमा की सतह पर ले जाने से यह

एक स्प्रिंग दोलक की आवृत्ति दोगुनी करने के लिए हमें