બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.

$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.

$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.

$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.

નીચે આપેલ ઘટનાઓ વર્ણવો :$A \cap B^{\prime} \cap C^{\prime}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When two dice are thrown, the sample space is given by

$s =\{(x, y): x, y=1,2,3,4,5,6\}$
$=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right]$

Accordingly,

$A =\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$B =\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3) \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$

$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$

$C^{\prime}=\left\{\begin{array}{l}(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6), \\ (4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),\\ (5,5),(5,6) ,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$A \cap B^{\prime} \cap C^{\prime}=A \cap A \cap C^{\prime}=A \cap C^{\prime}$
$=\left\{\begin{array}{l}(2,4),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5) \\ (4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

Similar Questions

ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.

માત્ર બે જ કાંટા મળે. 

જો કોઈ ઘટના બનવાની શક્યતા $3 : 8$, હોય તો ઘટના ન બનવાની શક્યતા કેટલી?

એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે લાલ રંગની હોય, તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.

પહેલા બસો ધન પૂર્ણાકો  પૈકી યાર્દચ્છિક રીતે એક સંખ્યા પસંદ કરવામાં આવે, તો તેને $6$ અથવા $8 $ વડે ભાગી શકવાની સંભાવના કેટલી થાય ?

બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.

$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.

$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.

$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.

$A$ અને $B'$ પરસ્પર નિવારક છે.