Two particles ${A}$ and ${B}$ having charges $20\, \mu {C}$ and $-5\, \mu {C}$ respectively are held fixed with a separation of $5\, {cm}$. At what position a third charged particle should be placed so that it does not experience a net electric force?
At $5\, {cm}$ from $20\, \mu {C}$ on the left side of system
At $5\, {cm}$ from $-5 \,\mu {C}$ on the right side
At $1.25 \,{cm}$ from $-5\, \mu {C}$ between two charges
At midpoint between two charges
A charged particle is suspended in equilibrium in a uniform vertical electric field of intensity $20000\, V/m$. If mass of the particle is $9.6 \times {10^{ - 16}}\,kg$, the charge on it and excess number of electrons on the particle are respectively $(g = 10\,m/{s^2})$
Charges $Q _{1}$ and $Q _{2}$ arc at points $A$ and $B$ of a right angle triangle $OAB$ (see figure). The resultant electric field at point $O$ is perpendicular to the hypotenuse, then $Q _{1} / Q _{2}$ is proportional to
Figure shows a rod ${AB}$, which is bent in a $120^{\circ}$ circular arc of radius $R$. A charge $(-Q)$ is uniformly distributed over rod ${AB}$. What is the electric field $\overrightarrow{{E}}$ at the centre of curvature ${O}$ ?
A uniformly charged rod of length $4\,m$ and linear charge density $\lambda = 30\,\mu C/m$ is placed as shown in figure. Calculate the $x-$ component of electric field at point $P$.
A charge $Q$ is distributed over a line of length $L.$ Another point charge $q$ is placed at a distance $r$ from the centre of the line distribution. Then the force expericed by $q$ is