- Home
- Standard 12
- Physics
दो बिन्दु आवेशों $q _{1}(\sqrt{10} \,\mu C )$ तथा $q _{2}(-25 \,\mu C )$ को $x$-अक्ष पर क्रमश : $x =1\, m$ तथा $x =4 \,m$ पर रखा गया है। $y$-अक्ष पर बिन्दु $y =3 \,m$ पर विधुत क्षेत्र का मान
( $V / m$ में) होगा।
$\left[\right.$ दिया है : $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,Nm ^{2} C ^{-2}\right]$
$(63\hat i - 27\hat j) \times {10^2}$
$(-63\hat i + 27\hat j) \times {10^2}$
$(81\hat i - 81\hat j) \times {10^2}$
$(-81\hat i + 81\hat j) \times {10^2}$
Solution
$\overrightarrow {\text{E}} = \frac{{{\text{k}}{{\text{q}}_1}}}{{{\text{r}}_1^3}}{\overrightarrow {\text{r}} _1} + \frac{{{\text{k}}{q_2}}}{{{\text{r}}_2^3}}{\overrightarrow {\text{r}} _2}$
$ = {\text{k}} \times {10^{ – 6}}\left[ {\frac{{\sqrt {10} }}{{10\sqrt {10} }}( – \widehat {\text{i}} + 3\widehat {\text{j}}) + \frac{{( – 25)}}{{125}}( – 4\widehat {\text{i}} + 3\widehat {\text{j}})} \right]$
$ = \left( {9 \times {{10}^3}} \right)\left[ {\frac{1}{{10}}( – \widehat {\text{i}} + 3\widehat {\text{j}}) – \frac{1}{5}( – 4\widehat {\text{i}} + 3\widehat {\text{j}})} \right]$
$ = \left( {9 \times {{10}^3}} \right)\left[ {\left( { – \frac{1}{{10}} + \frac{4}{5}} \right)\widehat {\text{i}} + \left( {\frac{3}{{10}} – \frac{3}{5}} \right)\widehat {\text{i}}} \right]$
$ = 9000\left( {\frac{7}{{10}}\widehat {\text{i}} – \frac{3}{{10}}\widehat {\text{j}}} \right)$
$ = (63\widehat {\text{i}} – 27\widehat {\text{j}})(100)$